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The purpose of this paper is to consider the effect of one-dimensional random 
depth variation on the propagation of planetary waves in a homogeneous layer 
of fluid having a free upper surface. We begin by determining the dispersion 
relation for the coherent part of the wave using the vorticity equation for the 
transport stream function and a previously described perturbation method. Then, 
from the resulting first-order expressions for the wavenumber, we obtain the 
phase speeds for the two possible planetary-wave solutions. These are compared 
with the corresponding phase speeds of planetary waves over a smoothly varying 
topography; the validity limits of the approximations are discussed. For the 
most physically realizable situation, of random depth correlation lengths much 
shorter than a typical wavelength, we find that the phase speed of the shorter 
(longer) wave component is less (greater) over a randomly varying topography 
than over a smoothly varying topography. I n  the case of the shorter waves, 
greatest relative changes in phase speed occur when the associated fluid motions 
are a t  right angles to the ‘strike’ of the roughness elements, while for both long 
and short waves there is no relative change in phase speed if fluid motions are 
parallel to the roughness contours. Moreover, both types of waves are shown to 
lose energy in the direction of energy propagation as a result of scattering. 
Numerical values are then obtained using hydrographic charts of the western 
North Pacific, and show that the randomness may significantly decrease the 
phase speed of the shorter planetary-wave component. Finally, we give a brief 
descriptive explanation of the results based on the effect of the topography on the 
wave restoring mechanism. 

1. Introduction 
Quasi-geostrophic waves play a major role in determining the planetary-scale 

circulations in the oceans. It is therefore essential to our understanding of large- 
scale motions to have detailed knowledge of the effects of bottom topography on 
the propagation of these waves. 

In an incompressible fluid, planetary waves are governed dynamically by t,he 
conservation of potential vorticity following the motion, which requires any 
change in the absolute vorticity (relative plus planetary) of a column of fluid to  
be compensated for by an alteration in the length of its vortex lines. For the 
simplest case, of barotropic flow, the length of these lines is obtained directly 



268 R. E .  Thowmon 

from the local fluid depth. The work of Rossby (1939) and Longuet-Higgins 
(1964,1965) has shown the basic importance of the planetary vorticity tendency 
(the so-called p-effect) as a restoring mechanism for these waves, while Rhines 
(1969 u, b) has demonstrated the greater importance of depth-induced vortex 
stretching as a restoring mechanism for the cases of a smoothly varying bottom 
and isolated topographic features. Rhines (1970) has also considered the linear 
resonant interaction (weak scattering) between two planetary waves in the 
presence of a ‘‘ catalytic Fourier component” of the depth. More recently, Rhines 
& Bretherton (1 973) have presented a fairly comprehensive study of the effects 
of ‘rough’ and ‘ smooth’, sinusoidally varying topography on the propagation of 
planetary waves in a barotropic ocean having a rigid lid. Their results indicate 
that severe roughness of the topography reduces both the scale of the waves and 
their associated propagation of energy. Finally, a somewhat different problem 
has been considered by Keller & Veronis (1969), who determined the effect of 
random currents (effectively, a random background of relative vorticity 
advection) on the propagation of planetary waves. 

I n  a sense, this paper is related to the latter two studies since we concern our- 
selves with the propagation of planetary waves over a rough bottom on which 
the topographic variations are considered to be a random variable. As in Keller & 
Veronis, our analysis is based on the method devised by Keller (1967) for finding 
the dispersion relation for an ensemble-averaged wave in a random medium. The 
criterion for the applicability of this method to the present problem is that 
(w  sin 8)2dT(0) be somewhat less than unity, where w is the Coriolis parameter 
divided by the wave frequency, 0 is the angle of phase propagation relative to the 
depth gradient and e2r(0) is the mean-square fractional change in depth. For the 
ocean there will exist certain regions where the approximation fails for all 
possible waves, such as where seamounts (e.g. Cobb Seamount in theN.E.Pacific) 
penetrate close t o  the surface or where there exist islands or island arcs. Over 
many vast areas of the ocean, however, the results may be considered applicable. 

I n  the next section, we present the appropriate vorticity equation for an ocean 
with a free surface having an exponentially varying mean depth upon which there 
is superimposed a random bottom fluctuation. The dispersion relation for the 
ensemble-averaged wave is then obtained following Keller (196T), and from this 
we derive expressions for the magnitudes of the two possible wavenumber com- 
ponents correct to  second order in the fluctuations. In s 3, we use these expressions 
to show the effect of the random topography on the phase speed of planetary 
waves, and point out that the effect on the magnitude of the group velocity is 
qualitatively similar. Using topographic charts for the North Pacific published 
by Scripps University, we then obtain numerical values for the analytical 
expressions when the rough part of the topography has correlation lengths which 
are much shorter than typical wavelengths. Section 4 includes a discussion of the 
results and an attempt to explain physically what is taking place. 
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FIGURE 1. A vertical section through the fluid layer at right angles to the random depth 
variations. h(x)  is the time-averaged depth at  x and d(x, t )  is the time variation about this 
mean. 

2. The dispersion relation 
To derive the vorticity equation appropriate to a homogeneous incom- 

pressible fluid on a /3-plane with a free upper surface, we follow the formulation 
of Thomsoii (1973). Somewhat similar derivations have also been presented by 
others (e.g. Rhines 1969a; Buchwald 1972). 

Let (x, y, x )  be the Cartesian co-ordinates in the eastward, northward and 
vertically upward directions, respectively, for a fluid having a total depth 
H = d + h (figure 1), where d ( x ,  y, t )  is the time-dependent surface elevation above 
the mean depth h(x, y). By defining a scalar function $, associated with the non- 
divergent motions, and another scalar q5, associated with the surface divergent 
motions, through the relation 

H u  = K x V$ + V$, 
we find that the vertically integrated continuity equation can be written as 

d,+V.(V$h) = 0.  (2.1) 

Here, subscripts refer to partial differentiation, u is the velocity and K is a unit 
vector in the + z  direction. Equation (2.1) may be combined with the vorticity 
equation derived from the linearized inviscid form of the momentum balance to 
yield an equation in $ and $. A second equation in these scalars is obtained by 
combining (2.1) with the divergence of the momentum balance. If we then 
assume that the radian frequency B of the planetary waves is much less than the 
local inertial frequency f and also that the fractional changes in both the depth 
and f are O(.-/f) over a wavelength, we obtain a simplified version of the vorticity 
equation; viz. 
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in which V2 is the two-dimensional Laplacian operator and g is the acceleration 
due to gravity. In  deriving ( 2 . 2 ) ,  we have further assumed that d < h and that 
f = fo +py (f, and P being constants) when it appears differentiated with respect 
to y (the P-plane approximation). 

For a locally constant f and sinusoidal motions, ( 2 . 2 )  gives the energetically 
correct relation of a purely real wave frequency for real wavenumbers, whereas 
the more general vorticity equation does not. In the latter case, Veronis (1966) 
has shown that it is necessary to allow for spatial variations in both f and the 
stream-function magnitude to obtain such a relation. Moreover, since we shall be 
considering h to have a random variation about a mean value, the exact wave 
field $ will be a random function. This exact solution must then be written as 
$ = ($) + $', where the angular brackets represent an ensemble average over 
many realizations of the flow field in a particular topographic region, with $' 
representing deviations of the exact wave from the coherent or mean field (+) 
over that region. (Such realizations must be thought of as initiated by the same 
process with the space-time values in the region taken a t  the same phase.) If the 
spatial amplitude of $ were modulated by the depth, as is necessary in Veronis' 
case, it would not be possible to obtain a simple relationship for ($.> since averages 
of the product of the random part of the depth and the random part of the stream 
function would need to be included. I n  the analysis of ( 2 . 2 )  however, these 
complications do not arise and the physics of the situation can be understood by 
consideration of the coherent wave alone. 

The problem nowinvolves specifying a realistic model for the depth. If one looks 
atrecent bathymetric charts oftheocean, suchasthoseproduced by Chase, Menard 
& Mammerickx (1970) for the North Pacific, it is clear that the most general 
description of the topography would involve a gently sloping mean depth upon 
which are superimposed abrupt features such as seamounts, ridges and trenches. 
The latter two, of course, have a definite orientation, with depth variations along 
the strike being relatively small compared with depth variations a t  right angles 
to this direction. However, depths in the normal direction appear to be randomly 
distributed. The seamount distributions within a given locality do not in 
general have a preferred direction, although the mean slope upon which they are 
superimposed does. None the less, there are regions of seamount chains which 
show a greater and more random variation in depth along one direction than 
along the other. In  order to obtain relatively straightforward analytical results, 
we therefore limit our discussion to oceanic regions exhibiting such preferred 
depth orientations. Furthermore, we assume, for the sake of simplicity, that any 
trend in the mean depth profile varies exponentially with distance. Any other 
type of modelling of the mean depth would detract from the usefulness of the 
results by greatly complicating the problem. 

Suppose that the co-ordinate in the preferred direction of depth variation 
about the mean is c, and that depth changes about the mean in the 11 direction, 
a t  right angles to this, are significantly smaller. Then the transformation to 
co-ordinates orientated along these fluctuating depth variations is 

C O S ~  sina x (i) = (-sinix m a )  (y)7 
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where - $71 < a < +r in order to avoid any ambiguity in the definition of orienta- 
tion. If we now assume that the stream function has theseparable time dependence 

$(& 7, t )  = exp ( - iw Y(E, ?I)> 

Nt? 7) = hoexp (m5 + n?;l) [ I +  W($)I? 

with i~ > 0 and real, and that the depth has the form 

where h,, m and n are constants, 0 < s < 1 and ,u is a zero-mean random variable, 
we may write (2.2) to O(s)  as 

12.3) 

I n  deriving (2.3), we have made the additional assumptions that f 21 f, and 
( f2 /gh)  exp [ - (m5+ny)] 21 fi/gho = 7;. For the former assumption to be valid, 
we require thatf changes little over a wave scale; i.e. that 

A, 2?fo/P, 

where A, is the wavelength in the northern direction. Clearly, the approximation 
fails near the equator for much shorter wavelengths than a t  mid-latitudes. At 
5' latitude, for example, A, < 3000 km while at 40" this limit rises to 30000km. 
The requirement that m[ + ny < 1 in the surface divergent term implies that 
changes in the mean depth are small over a wave scale. Since Iml, In1 2: E-l IVEl, 
where % is the mean depth, this requires that AE/E < 1 over a wavelength, which 
is the basic assumption in our derivation of (2.2). We note here that the surface 
divergence is included in the deterministic part of (2.3) simply to allow for the 
existence of two planetary-wave solutions for a given frequency. At worst, 
surface divergence contributes a term of order "$A2 (where yiA2 < 1) to the 
random operator, and this is small in comparison with the O(e2) contribution 
from depth variations. 

Equation (2.3) has the form 
( L + M ) Y  = 0, 

where "1 a 
(pcosa - fon) - - (psina- fom)  - 

a< a?I 
is a linear deterministic differential operator and 

(2.4) 

is a linear centred (i.e. zero-mean) random differential operator. When M is a 
small perturbation of the deterministic operator L, in the sense that the norm 
llL-1Bll is less than unity, we may obtain the dispersion relation for the ensemble- 
averaged stream function ($([, 7, t ) )  using the method described by Keller (1967). 
In  particular, we find that the first-order approximation to the dispersion 
relation is 

exp [ - i(k[ + Zy)] [L - (ML- lM)]  exp [ + i ( k t  + ZT)] = 0, (2.6) 
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FIGURE 2. A plot of the slowness curves (5 = constant) for planetary waves in a layer of 
fluid having a uniform mean depth (dashed circle) and in a fluid layer having a mean depth 
decreasing to the east (solid circle). The variables 6 and k are, respectively, the position 
co-ordinate and wavenumber component across the random depth variations, which are 
orientated at  an angle u to  east. O P  and OQ are in the directions of the short and long wave 
components, respectively. C is the centre of the solid circle. 

which for iW f 0 yields the deterministic relation for planetary waves 

(2.7) 
k(/3 cos a -ton) - Z(psina - fom) 

k2 + Z2 +y: 
a(k,Z) = -. 

Setting m = n = 0 in (2.7) results in the usual dispersion relation for Rossby 
waves (h uniform). A plot of the ‘slowness curves’ (the curves r~ = constant in 
wavenumber space) for the cases of a uniform and a slowly varying mean depth 
is presented in figure 2 .  I n  each case, there are (for a given frequency and direction 
of phase propagation) two waves, one short and one long, corresponding t o  where 
the circle cuts a line drawn from the origin. Clearly, the effect of the topography 
is to ‘swing’ the locus of possible wavenumbers about the origin by adding to the 
Rossby wavenumbers a topographic component which always moves wit,h deep 
water to its left in the northern hemisphere. The short waves in this case, then, 
have their phase propagation in the direction O P ,  long-wave phase propagation 
being in the direction OQ. The group velocities are in the directions P C  and QC, 
respectively. 

We now wish to determine the correction to the wavenumbers in (2.7) brought 
about by the ensemble average of the random operator in (2.6). To do this we 
need to know the form of the operator L-l. Let us, then, define 

where G is the Green’s function, 
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and 6 is the Dirac delta function. A double Fourier transform of (2.9) then pro- 
duces $(k, E ) ,  which, when inverted with respect to k, yields the single transform in 

As the poles associated with the latter transform lie on the real k axis, the path 
of integration in the complex k plane must be indented around them in such a way 
that the transformed Green's function G(6, I) produces outward-propagating 
energy along 5, in accordance with the Sommerfeld radiation condition. The 
analysis therefore involves determination of the components of the group 
velocity along E for the two possible waves. For 

7, @ ( 5 , 4 .  

B = -(2~)-1(/3cosa-fon) 

and D = 1-B-2[12+~i-(Z/@ (,!?sina-f,,m)], 

the result is found t o  be 

Q<,o = ( i l 2 p I  D k P [ i ( B & D i  JBJ \<\)I ,  (2.10) 

which may now be applied to the analysis of the correction term through use of 
(2.8). 

Application of (2.5) and (2.8) to the exponential in (2.6) gives 

If we now transform this equation via the new variables 5 - 
and use the relation aplag' = - a,ula[, we find that 

= c and 7 - 7' = $j 

in which we have also taken the opportunity to invert one integral with respect 
to 7. Use of (2.5) on (2.11) and ensemble averaging finally yields 

(HL-1H)exp [ i ( k t + ~ r ) l =  szexp[i(k5+~7)1/~ a([, Z) e-i"8(c)dc,  (2.12) 
-cc 

in which (2.13) 

is deiined in terms of Vt) = <P(E)P(E-t ) ) ,  (2.14) 

the autocovariance function for the depth fluctuations. The dispersion relation 
(2.6) for the coherent waves is then obtained using (2.4) and (2.12). To O(s2),  the 
result is 

K2 +K - cos ( I9+ a )  +- f 0  (m sin I9 -n cos 0) ] + 7; + s2/ a([, I) e-ikg cig = 0, 
0- - w  

(2.15) 

where we have transformed the deterministic part of this relation via the polar 

(k, I )  = K(cos 8, sin 8). (2.16) co-ordinates 

r 
As a consequence of (2.16), we may consider (2.15) as an equation for K as a 
function of c and I9 with the parameters fo, /3 and a. Solutions to (2.15) are found 

18 F L M  70 
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through an iteration procedure, in which the zeroth-order approximations are 
obtained by setting c = 0. The first-order smoothing or iterative solutions are 
then found by substituting the respective zeroth-order solutions into the c2-term. 
Therefore, letting 

Kj, = &a7 Zjo) ( j  = 1,2)  (2.17) 

define the wavenumber components for the two zeroth-order solutions of (2.15) 
and using expression (2.10) for G((, Zjo), we obtain to O(c2) 

K2 + ~ , 8 * / 0 -  + yg + €2 [2(kjO - ~41-1 sin [2(kj0 - B)  51 ~ ( 5 )  rig 1 s o w  

+ ?: Ikjo - BI-llom cos2 [(kjo - B)  51 X(g) dc) = 0, (2.18) 

in which p* = Pcos (0 +a)  +fo(m sin 8 - n cos 0) (2.19) 

is a modified ,&effect and where we have used the fact that I?(() is an even func- 
tion and that D* = Iki, - Bl/l BI , to the order required. 

Integrating by parts in (2.18) after substitution of (2.13), we finally obtain 

R2 + K@:”la + y: 

- €2 (( zj0$)l [ r(o) - 2i p j o - ~ l  1 wr(c)exp 1- 2i  pj0-~ l  51 d c ] }  = 0, (2.20) 
0 

in which we have used the fact that dr(O) /d(  = 0 for any autocovariance function. 
Letting e2R be defined by the last expression in (2.20), we may solve for the 

two roots K j  (j  = 1,2): 

where Rj is the value of R for the wavenumber of the zeroth-order solution (e = 0) 

K .  30 = - -&P* /g- ( -  l)j((&P*/a)2-y$4. (2.22) 

Since the K’s must be positive-definite quantities, the angle 0 in (2.19) must be 
chosen such that p* < 0. For Rossby waves (m = n = 0) this limits the direction 
of phase propagation to 

while for waves in a fluid of variable mean depth the range of 0 will depend upon 
the magnitude and sign of the parameters m and n. 

The validity of the first-order smoothing is seen from (2.21) to require that the 
magnitude of the correction term e2Rj be somewhat less than the zeroth-order 
term (+P*/a)2 - 1/02. Moreover, the surface divergent effect must always be smaller 
than t,he combined effects of the latitudinal variation of the Coriolis parameter 
and the depth gradient (i.e. yo < &P*/a) in order that real solutions to (2.22) are 
obtained. Therefore, if we assume that we can ignore higher-order terms in an 
expansion in ~~(&/3*/a)-~, t’he two zeroth-order solutions from (2.22) are to a 
good approximation 

&7r-u < 0 < #7T-u, 

K1O = -p*/g+ygg//3*, K2, = -ygcrfp*, 
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which together with (2.16) and (2.17) permit us to determine R, and R,, and 
therefore the first-order wavenumbers (2.21). These are to O(s2) 

K1 = K1, - c2(K1O - K20)-1 R1 (2.23) 

and K2 = Kzo + ~ ~ ( K i o  - K20)-' Rz, (2.24) 

where K,,-K,, > 0 and where the R's are given by the $-term in (2.20). In  
expanded form these complex quantities are 

for j = 1,2.  In  (2.25), r(0) measures the mean square of the depth fluctuations 
while the integrals represent an interaction between the waves and t,he 
topography. 

3. Wave amplitude and phase speed 
The real parts of relationships (2.23) and (2.24) can now be used to find the 

ratios of both the phase speeds and group-velocity magnitudes of the waves in a 
surface divergent fluid of smoothly varying depth to those in a fluid with a 
superimposed random depth variation. (Although we shall confine our attention 
to the analytically simpler phase-speed expression, it should be noted that the 
results for the group-velocity components are qualitatively similar since they 
too are proportional to the magnitude of the wavenumber.) The change in 
amplitude of the ensemble-averaged stream function due to scattering is 
obtainable from the imaginary parts of these relationships. Letting 

Cjo = g/Kjo 

be the phase speeds in the absence of bottom roughness and 

Ci = g/Re{Kj> (3.1) 

(3.2) 

those when there is rough topography, we find from (2.23)-(2.25) that 

Cio/Cj - 1 = ( - l)j sz Re {Rj}/Kj,(Klo - K2,) 

for j  = 1,2.  The validity of the first-order smoothing is now dependent upon the 
magnitude of the right-hand side of (3.2) being much less than unity. Thus, for 
a given region having a particular configuration of topographic roughness, there 
will be a bite range of wavenumbers for which the reSults are applicable. The 
greater the mean-square depth the more limited this range, as one would expect 
for a problem including a fist-order smoothing technique. 

When the right-hand side of (3.2) is negative, the planetary waves over the 
irregularly varying bottom have a larger phase speed than those over a smoothly 
varying bottom while a positive value indicates the reverse situation. Using 
(2.25), therefore, it is clear that the effect of the mean-square depth range F(0) is 

18.2 



276 R. E. Thomson 

to decrease the phase speed of the short wave component and to increase the 
phase speed of the long wave component. On the other hand, the effect of the 
integral term can be to decrease or increase the wave speed of the two com- 
ponents. In  either case, there is no change in phase speed if the actual fluid motions 
are parallel to the roughness contours (i.e. Zjo = 0) .  

The imaginary parts of the Ki, which determine the change in amplitude of the 
two solutions ($J in the direction of phase propagation, are found from (2.25) 

in which the bracketed term is Im {Rj> and where 
W 

~ [ 2 ( k ~ ,  - ~ j l =  's r(g) exp [2i(kjO - B )  [I tic (3.4) 277 -a 

represents an energy spectrum for the interaction of the planetary waves with 
the bottom topography. Since the bracketed terms in (3.3) are non-negative, we 
find Im{Kl} < 0 for the short wave component and Im(K,} > 0 for the long 
wave component, which signifies that in the direction of phase propagation the 
magnitude of ($1) is increasing while that of ($2) is decreasing. However, as the 
sign of the group-velocity component across the roughness contours is opposite 
to that of the corresponding phase-velocity component for the short waves and 
the same for the long waves, there is always a decrease in the amplitude of the 
ensemble-averaged stream function in the direction of energy propagation. The 
only exceptions are when the actual fluid displacements and the direction of 
amplitude modulation (i.e. the group-velocity direction) are parallel to the 
roughness contours ( l jo  = 0 and kjo -B  = 0 ,  respectively). In  these cases there is 
no amplitude change in the direction of phase propagation. 

The expression for Rj may be simplified by considering the two asymptotic 
limits L/h < 1 and L/h 9 1, where L is the correlation length for the depth varia- 
tions and h is the characteristic wavelength. The correlation length is the distance 
beyond which the correlation between depths becomes negligible, i.e. r(t) N 0 
for > L. 

Short correlation lengths 

Suppose that the wavelength of the planetary waves is much greater than the 
distance over which the bottom features are correlated. Then, substituting 
2(ki,- B)  = 4r/h and < = L c  into (2.25), we find upon retaining only the first 
terms in the expansion in L/h that 

and 

where 

and in which we have assumed that the integrals 

Sm r ( L . g ) p d g  r(Ly).pd.g, = 0,1,2, ..., 
--a, 

are of order unity. 
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The phase-speed relation (3.2) thereby reduces to the simple form 
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(3.7) 

so that the relative change in phase speed is strictly dependent upon the mea.n 
square of the depth fluctuations about the mean profile. In  this limit, then, the 
short planetary-wave component has a slower phase speed than a wave of the 
same frequency propagating over a smoothly varying depth. The long wave 
component,, on the contrary, has a greater phase speed with the relative change 
being less than that for the short wave by the ratio K,,/K,,, all other factors 
being equal. 

As indicated by Im{Rj} in (3.6)) the effect of the random bottom on the ampli- 
tude of the mean stress functions is very small for short correlation lengths, and 
is typical of situations in which the dimension of the scatterers is much less than 
that of the waves. 

Although the short-correlation limit is much more applicable to the real ocean 
than the long-correlation limit, as we shall show presently, the latter is included 
here for the sake of completeness. 

Long correlation lengths 

In  this case we consider the limit L/h 9 1. Since this necessitates kj0 - B + 0, the 
range of validity of this approximation is much more restrictive than that for the 
limit of short correlation lengths. Moreover, the fact that the argument of the 
circular functions in (2.25) is large implies that the integrals will be small. To 
obtain an asymptotic expansion in AIL, therefore, we need to integrate by parts, 
from which it follows that both Re {I$} and Im{Bj} are at most of order In 
this limit, then, neither the phase speed nor the amplitude of the waves is much 
affected by the random topography. 

A numerical example 

In  order to give quantitative values t o  the phase speeds derived previously, we use 
a series of bathymetry charts for the North Pacific published by Scripps Univer- 
sity (Chase et al. 1970). From these charts it can be seen that the extensive region 
west of North America extending to about 160" W longitude and south of 50" N 
latitude appears to be reasonably well suited to our model. In particular, the 
mean depth in the northern direction remains nearly uniform a t  about 5000 m 
while the orientations of the major fracture zones which cross the region remain 
consistently east-west. Figure 3 shows two typical north-south profiles of ~,u. 
The predominent features, having longitudinal extent exceeding 40°, are the 
Clipperton and Molokai fracture zone$ between 5-7" N and 23-26"N latitude, 
respectively, and the more rugged Clarion and Murray fracture zones between 
14-17' N and 30-33" N latitude, respectively. The more northerly situated 
Mendocino fracture zone has not been included in the examples although its 
east-west strike continues the pattern established by the fracture zones to the 
south. The large peak a t  about 23"N on the 127" W longitude line in figure 3 
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FIGURE 3. Normalized variations in depth as a function of latitude y for two meridians of 
longitude (a )  145"W and (b)  127'W in the western North Pacific. The mean depth in the 
northern direction is assumed uniform (ho), so that ep(y) = h(y)/ho - 1. Depths have been 
interpolated from topographic charts of the North Pacific published by the University of 
California, La Jolla (Chase et al. 1970). 

marks the location of one of the isolated seamounts that occur within the region. 
Since E,U < O( l O - l ) ,  it is clear that the topography in this extensive region satisfies 
the assumption concerning the smallness of the random variations. Also, the 
fractional eastward decrease in the east-west profile of the mean depth is at  
most 40 yo from 160" W longitude to 115' W longitude and appears to approxi- 
mate the exponential behaviour specified in the model. 

In connexion with the above depths, it should be mentioned that the values 
assigned between pIotted contours on the charts are not based on actual soundings. 
Rather, they are based on a random selection of the depth every 15' according to 
the maximum amount of relief possible in a given area as indicated schematically 
on the charts. The relative change in depth beginning with a specified contour is 
then chosen as a fraction of this maximum value by rolling a pair of dice. A total 
of 7 represents zero change (i.e. 0/5) while 12 and 2 represent positive and 
negative fractional changes of 5/5,  respectively, the normal distribution curve 
for a pair of dice tending to weight smaller depth increments. 

The autocovariances obtained from the depth variations are plotted in figure 4 
for lag increments of 15' latitude. They appear to support the assumption of a 
random topography at  Rossby-wave scales ( > 10 km) since in both examples the 
normalized autocovariances are less than 0.5 after Iags of only 15' ( N 25km). Of 
course, depth changes on scales less than 25 km, which will undoubtedly affect the 
propagation of barotropic planetary waves, are absent from these calculations 
because of the limited accuracy of the bathymetric charts used. Moreover, the 
analysis used in this paper, being based strictly on the conservation of potential 
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FIGURE 4. The autocovariance r(y') = (p (y )p(y -y ' ) )  of the depth variations of figure 3 
along the two meridians of longitude (a )  145" W and ( b )  127" W as a function of y' = lag (in 
degrees of latitude). 

vorticity, would need to be modified if it were to include the effect of depth changes 
occurring within distances of kilometres or less. This is because there will be an 
additional adjustment in the flow near the bottom to conform to the topography 
which will then make possible wave motions which differ somewhat from those 
strictly controlled by potential vorticity. A complete understanding of the modi- 
fication of planetary waves by a rough bottom would necessarily include such an 
effect, None the less, the analysis presented here is as accurate as the data will allow 
and does give a first insight into the influence of the rough terrain on planetary- 
wave propagation, demonstrating that such influence is far from negligible. 

Besides the absence of information a t  scales less than 15' of latitude in the 
autocovariances, there is also an absence of large-scale information because of 
the finite length of the record. As with any other data set obtained from a 
physical process, our results are based on a denumerable collection of discrete 
values. Hence the number of samples within the population on which the auto- 
covariances are based decreases with increasing lag. It can be considered, in effect, 
that values of these functions for lags greater than 10-20 yo of the total number of 
data points do not give a true representation of the mean variance of the process. 
At large lags, therefore, it is not really valid to talk of an ensemble average since 
the averaging process involves so few realizations of the particular wavelength. 
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For this reason, the autocovariances in figure 4 have been arbitrarily truncated at  
a lag corresponding approximately to the limit at  which all data points can be 
used in the calculations. Within this cut-off, however, the figures do show that 
besides the topographic microstructure there do exist more regular variations 
having scales of about 6" of latitude ( N 600 km) resulting from the spacing of 
the larger fracture zones. In  a more rigorous treatment, both these variations, 
which are essentially part of the deterministic problem, and the trend would have 
to be removed from the autocovariances. However, as the amplitude of these 
variations remains relatively small, we shall assume that the mean depth in the 
direction across the fractures is uniform, and concentrate our attention on the 
small-lag region of the curves. 

Using the calculated values of sT(O), we may now determine numerically the 
phase speeds of the two planetary-wave components. Since the autocovariances 
indicate a short correlation length for the topography relative to typical 
planetary-wave scales, our numerical results will be applied to the short- 
correlation limit (3.7). 

As indicated by the graphs of the depth autocovariance, we may take 
e2r(0) N 2 x as a typicad value between 5 O  N and 50" N for the region under 
consideration, while representative values of the mean slope parameter for the 
same region are 

m N 0, n N 2 x  lo-9cm-l. (3.8) 

(3.9) 

The remaining parameters are representative for 30" N: 

f o  E! 7 x lo-5s-1, /3 N 2 x 10-13 cm-l s-1, 

where also (T <to. Use of (3.8) and (3.9) in (2.19) shows that the requirement 
p* < 0 is satisfied provided that 8 is given approximately by 

-35" e < 1450. (3.10) 

Moreover, the assumption that the surface divergence effect is small (yo < @*/a) 
is reasonably valid if (T < ifo (h, 2c 5000 m), although such a requirement is not 
essential to obtain physically meaningful results. Finally, the validity of the 
first-order smoothing is seen from (3.7) to necessitate 

e2r(0) (focr-1sin8)2 < 1, (3.11) 

which, for the particular oceanic region considered here, limits the wave frequency 
IT to the fairly restrictive range 

10-1lsin8l < 2a/f0 < 1.  (3.12) 

Since a = 13n-I for the east-west orientated fracture zones in this part of the 
Pacific and 8 is given by (3.10), the relation (3.1 1) is most restrictive for waves of 
a given scale propagating westward and least restrictive for those propagating 
northward. For planetary waves whose phase moves a t  an angle of 45" to the 
roughness contours, representing neither the most nor least restrictive direction, 
the range of wavelengths to  which (3.12) corresponds is 

600km < h < 10000 km. 
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FIGURE 5. The phase speed C, of the short planetary-wave component as a function of the 
direction of propagation 6 in the limiting casesfo/a = 2, 20 (fo = 7 x 10-5s-1). Divergent 
surface motions: -0-, fO/u = 2; -0-, fo/a = 20. Non-divergent surface motions 
(yo = 0 ) :  --A --,fO/a = 2;-- x --,fo/u = 20.Theangle8ismeasured,counterclockwisefrom 
north since the random components of topography are aligned east-west. Clo is the zeroth- 
order phase speed in the absence of random depth variations. 

This is reasonably acceptable considering that the roughness has scales of order 
just under 100km, and that the upper limit is anyway determined by the require- 
ment that f should change little over a wavelength. For the values (3.9), the 
latter limits the longitudinal projection of wavelengths to scales less than 
20000km. 

Figure 5 is a plot of the relative phase speed for the short wave component in 
the limiting cases c = +fo and c = -\f0. As a comparison, we have also included 
corresponding curves for the rigid-lid case (vanishing surface divergence). I n  
each example, the curves show zero phase speed when fluid motions are parallel 
to the strike of the fracture zones. Except for the surface divergent case (CT = i f o ) ,  
maximum phase-speed changes occur when the fluid motions are at right angles 
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FIGURE 6. The phase speed C,  of the long planetary-wave component as a function of the 
direction of propagation 0 in the limiting casesf,/u = 2, 20 (fo = 7 x 10-5s-1) for divergent 
surface motions only: -O-,,f,,/u = 2; -m-,f,/u = 20. The angle 0 is measured counter- 
clockwise from north. C,, is the phase speed in the absence of random depth variations. 

to the fractures. The exception in this case arises because for r~ = fr fo the approxi- 
mation yo < 8/3*/r~ used in the derivation fails for angles 0 greater than 90". It is 
also apparent from this figure that the relative difference in phase speed decreases 
as the frequency of the waves increases (longer waves) for a given direction of 
propagation. 

The speed difference for the long planetary-wave component is plotted in 
figure 6. In contrast to the short-component case, the relative change increases 
as the frequency is increased. Moreover, there is not an angle of maximum change 
within the limits of the approximations which are valid for 8 > 47. Again, there 
is no difference in the phase speeds for waves propagating over a rough topo- 
graphic region and for those propagating over a smoothly varying region when the 
fluid motions are parallel to the strike of the roughness elements. Finally, in the 
absence of any surface divergence K,, vanishes, leaving only the short wave 
component as a truly propagating wave. 

4. Discussion and summary 
In  the previous sections we have described certain properties of planetary 

waves travelling over a rough bottom whose scale heights are much less than the 
total fluid depth. Since the topography in the present problem is a one-dimen- 
sional random variable, however, we are able to derive only the statistical values 
of the properties involved, whereby the wavenumber magnitude for a particular 
direction of propagation has small correction terms involving mean-square terms 
and transform functions for the topography. As with most problems of this 
nature, the mean-square terms measure the accumulated effect of the randomly 
situated 'scatterers' on the wave motion. The transform terms, on the other 
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hand, measure the integrated effect between the scales of the propagating waves 
and those related to the spacing of the scatterers. 

From the inviscid equations in $ 2 ,  it is possible to show that the potential 
vorticity II associated wjth a fluid column must be conserved during its motion; 
viz . , 

DII/Dt = 0, (4.1) 

where = (f+C)/h, (4.2) 

D/Dt = a/at + u . V is the Lagrangian derivative and 5 = (V x u), is the vertical 
component of relative vorticity. For any fluid column, a readjustment in its 
absolute vorticity f + 5 is required if the length h of its vortex lines is altered 
during its motion. Thus changes in depth are analogous to a restoring mechanism 
for planetary-wave motions, which, in the case of the short wave component for 
fixed frequency, produces a decrease (increase) in the wavenumber magnitude 
for a decrease (increase) in the restoring force. I n  our model, that part of the 
topographic restoring mechanism ( - f Vh)  which is associated with changes in the 
mean depth appears only in the deterministic part of the solution through the 
parameters m and n, and essentially generates a wavenumber whose phase moves 
with deep water to its left (right) in the northern (southern) hemisphere. When 
considered with the wavenumber generated by the /3-effect, this results in a 
change in the possible directions of phase propagation. 

The integrated contribution to the topographic restoring mechanism associated 
with the random depth component is determined by (2 .25) ,  the real part of this 
expression measuring the effective change in phase speed brought about by the 
random forcing while the imaginary part takes into account the backscattering 
tendency of the rough topography as it inhibits the passage of the fluid. By itself, 
the larger of the two real terms in (2.25),  r(O), is a measure of the mean-square 
increase in the effective restoring force brought about by the increased distance 
of travel of a fluid column that is conserving potential vorticity. The smaller 
term, expressed via the sine transform, is slightly more difficult to account for. 
Letting A$ = [(fo/.-) K j o  sin el2 we find 

where $j is the 'quad-spectrum' a t  the wavenumber 2 ( k j o - B ) .  Since it can be 
shown that the component of the group velocity is to O(e2) 

C,, = -2(kjo--B)c~/(k;o +Z:o +yi) ,  

the wavenumber 2(kj0  - B )  is proportional to the amount of energy flux across the 
contours associated with the random depth variations, and is therefore a scale 
for the spatial modulation of the wave amplitude in that direction. The even 
function A3 2(kjO - B )  Qtj is then a measure of the effective mean-square fractional 
height which results from an out-of-phase (go", 270°, . . .) interaction between the 
depth-induced variations in the wave and the spatially modulated wave ampli- 
tude. I n  other words, the transform integral takes into account the integrated 
effect of differences in the depth-induced relative vorticity between adjacent 
fluid columns as a result of their differences in path length, the latter being a 
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consequence of the spatial modulation of wave amplitude. If there is any 
consistency in the variation of this difference along a wave front, as a result of 
any periodic component in the depth variations whose scale is near to that of the 
spatially modulated amplitude, a net relative vorticity field will exist. This will 
act as an effective restoring force on the wave. Clearly, if the depth changes are 
only weakly correlated and/or the argument of is small, the term (4.3) will be 
small compared with the r(0) term, as in the case of the short-correlation limit 
of 5 3. The effect vanishes if there is no distortion of the fluid paths by the random 
depth variations (A? = 0 )  or if there is no component of amplitude modulation 
across the contours (k jo  - B = 0). 

The cosine transform term in ( 2 . 2 5 ) ,  which gives the decrease in wave ampli- 
tude in the direction of energy propagation, can be written in an analogous 
manner to (4.3); viz. 

where $7 is now the ‘co-spectrum’. I n  this sense, it is a measure of the effective 
height of the scatterers resulting from the in-phase interaction of the amplitude- 
modulated wave with the distorted wave paths. The more closely the spatial 
scales correspond, in this case, the more effectively the topography is behaving as 
an energy backscatterer. I n  the limit of short correlation lengths (cf. 5 3), the 
spatial coherence of any scattered energy is so small that it produces negligible 
energy loss. 

Since the short-correlation limit will pertain in most physically realizable 
situations, we may summarize our results as follows. First, the effect ofthe bottom 
roughness is to increase (decrease) the wavenumber magnitude of the shorter 
(longer) wave component from that for a smoothly varying topography for waves 
of constant frequency. As a result, the phase speed and group-velocity magnitude 
of the shorter (longer) waves are decreased (increased). The only exception is if the 
actual fluid motions are parallel to roughness contours, when no relative speed 
change occurs. Second, numerical values obtained from hydrographic charts of 
the western North Pacific indicate that the phase speed of the shorter com- 
ponent may be significantly altered by roughness features in the real ocean. 
Finally, both wave components lose energy in the direction of energy propaga- 
tion because of backscattering. These results are in basic agreement with the 
findings of Rhines & Bretherton, who used a deterministic approach to the 
same general problem. 
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